Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Adverse effects of adaptive mutation to survive static culture conditions on successful fitness of the rice pathogen Burkholderia glumae in a host.

Identifieur interne : 000276 ( Main/Exploration ); précédent : 000275; suivant : 000277

Adverse effects of adaptive mutation to survive static culture conditions on successful fitness of the rice pathogen Burkholderia glumae in a host.

Auteurs : Gi-Young Kwak [Corée du Sud] ; Eunhye Goo [Corée du Sud] ; Haeyoon Jeong [Corée du Sud] ; Ingyu Hwang [Corée du Sud]

Source :

RBID : pubmed:32833990

Descripteurs français

English descriptors

Abstract

Bacteria often possess relatively flexible genome structures and adaptive genetic variants that allow survival in unfavorable growth conditions. Bacterial survival tactics in disadvantageous microenvironments include mutations that are beneficial against threats in their niche. Here, we report that the aerobic rice bacterial pathogen Burkholderia glumae BGR1 changes a specific gene for improved survival in static culture conditions. Static culture triggered formation of colony variants with deletions or point mutations in the gene bspP (BGLU_RS28885), which putatively encodes a protein that contains PDC2, PAS-9, SpoIIE, and HATPase domains. The null mutant of bspP survived longer in static culture conditions and produced a higher level of bis-(3'-5')-cyclic dimeric guanosine monophosphate than the wild type. Expression of the bacterial cellulose synthase regulator (bcsB) gene was upregulated in the mutant, consistent with the observation that the mutant formed pellicles faster than the wild type. Mature pellicle formation was observed in the bspP mutant before pellicle formation in wild-type BGR1. However, the population density of the bspP null mutant decreased substantially when grown in Luria-Bertani medium with vigorous agitation due to failure of oxalate-mediated detoxification of the alkaline environment. The bspP null mutant was less virulent and exhibited less effective colonization of rice plants than the wild type. All phenotypes caused by mutations in bspP were recovered to those of the wild type by genetic complementation. Thus, although wild-type B. glumae BGR1 prolonged viability by spontaneous mutation under static culture conditions, such genetic changes negatively affected colonization in rice plants. These results suggest that adaptive gene sacrifice of B. glumae to survive unfavorable growth conditions is not always desirable as it can adversely affect adaptability in the host.

DOI: 10.1371/journal.pone.0238151
PubMed: 32833990
PubMed Central: PMC7444824


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Adverse effects of adaptive mutation to survive static culture conditions on successful fitness of the rice pathogen Burkholderia glumae in a host.</title>
<author>
<name sortKey="Kwak, Gi Young" sort="Kwak, Gi Young" uniqKey="Kwak G" first="Gi-Young" last="Kwak">Gi-Young Kwak</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Agricultural Biotechnology, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
</author>
<author>
<name sortKey="Goo, Eunhye" sort="Goo, Eunhye" uniqKey="Goo E" first="Eunhye" last="Goo">Eunhye Goo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Agricultural Biotechnology, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Haeyoon" sort="Jeong, Haeyoon" uniqKey="Jeong H" first="Haeyoon" last="Jeong">Haeyoon Jeong</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Agricultural Biotechnology, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hwang, Ingyu" sort="Hwang, Ingyu" uniqKey="Hwang I" first="Ingyu" last="Hwang">Ingyu Hwang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Agricultural Biotechnology, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32833990</idno>
<idno type="pmid">32833990</idno>
<idno type="doi">10.1371/journal.pone.0238151</idno>
<idno type="pmc">PMC7444824</idno>
<idno type="wicri:Area/Main/Corpus">000056</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000056</idno>
<idno type="wicri:Area/Main/Curation">000056</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000056</idno>
<idno type="wicri:Area/Main/Exploration">000056</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Adverse effects of adaptive mutation to survive static culture conditions on successful fitness of the rice pathogen Burkholderia glumae in a host.</title>
<author>
<name sortKey="Kwak, Gi Young" sort="Kwak, Gi Young" uniqKey="Kwak G" first="Gi-Young" last="Kwak">Gi-Young Kwak</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Agricultural Biotechnology, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
</author>
<author>
<name sortKey="Goo, Eunhye" sort="Goo, Eunhye" uniqKey="Goo E" first="Eunhye" last="Goo">Eunhye Goo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Agricultural Biotechnology, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Haeyoon" sort="Jeong, Haeyoon" uniqKey="Jeong H" first="Haeyoon" last="Jeong">Haeyoon Jeong</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Agricultural Biotechnology, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hwang, Ingyu" sort="Hwang, Ingyu" uniqKey="Hwang I" first="Ingyu" last="Hwang">Ingyu Hwang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Agricultural Biotechnology, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Biological (genetics)</term>
<term>Burkholderia (genetics)</term>
<term>Burkholderia (metabolism)</term>
<term>Burkholderia (pathogenicity)</term>
<term>Gene Expression Regulation, Bacterial (genetics)</term>
<term>Genome, Bacterial (genetics)</term>
<term>Genomics (methods)</term>
<term>Mutation (MeSH)</term>
<term>Oryza (microbiology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Quorum Sensing (genetics)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation biologique (génétique)</term>
<term>Burkholderia (génétique)</term>
<term>Burkholderia (métabolisme)</term>
<term>Burkholderia (pathogénicité)</term>
<term>Détection du quorum (génétique)</term>
<term>Génome bactérien (génétique)</term>
<term>Génomique (méthodes)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Mutation (MeSH)</term>
<term>Oryza (microbiologie)</term>
<term>Régulation de l'expression des gènes bactériens (génétique)</term>
<term>Virulence (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Burkholderia</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Genome, Bacterial</term>
<term>Quorum Sensing</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation biologique</term>
<term>Burkholderia</term>
<term>Détection du quorum</term>
<term>Génome bactérien</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Burkholderia</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Oryza</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Oryza</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Burkholderia</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Génomique</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Burkholderia</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Burkholderia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bacteria often possess relatively flexible genome structures and adaptive genetic variants that allow survival in unfavorable growth conditions. Bacterial survival tactics in disadvantageous microenvironments include mutations that are beneficial against threats in their niche. Here, we report that the aerobic rice bacterial pathogen Burkholderia glumae BGR1 changes a specific gene for improved survival in static culture conditions. Static culture triggered formation of colony variants with deletions or point mutations in the gene bspP (BGLU_RS28885), which putatively encodes a protein that contains PDC2, PAS-9, SpoIIE, and HATPase domains. The null mutant of bspP survived longer in static culture conditions and produced a higher level of bis-(3'-5')-cyclic dimeric guanosine monophosphate than the wild type. Expression of the bacterial cellulose synthase regulator (bcsB) gene was upregulated in the mutant, consistent with the observation that the mutant formed pellicles faster than the wild type. Mature pellicle formation was observed in the bspP mutant before pellicle formation in wild-type BGR1. However, the population density of the bspP null mutant decreased substantially when grown in Luria-Bertani medium with vigorous agitation due to failure of oxalate-mediated detoxification of the alkaline environment. The bspP null mutant was less virulent and exhibited less effective colonization of rice plants than the wild type. All phenotypes caused by mutations in bspP were recovered to those of the wild type by genetic complementation. Thus, although wild-type B. glumae BGR1 prolonged viability by spontaneous mutation under static culture conditions, such genetic changes negatively affected colonization in rice plants. These results suggest that adaptive gene sacrifice of B. glumae to survive unfavorable growth conditions is not always desirable as it can adversely affect adaptability in the host.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32833990</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Adverse effects of adaptive mutation to survive static culture conditions on successful fitness of the rice pathogen Burkholderia glumae in a host.</ArticleTitle>
<Pagination>
<MedlinePgn>e0238151</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0238151</ELocationID>
<Abstract>
<AbstractText>Bacteria often possess relatively flexible genome structures and adaptive genetic variants that allow survival in unfavorable growth conditions. Bacterial survival tactics in disadvantageous microenvironments include mutations that are beneficial against threats in their niche. Here, we report that the aerobic rice bacterial pathogen Burkholderia glumae BGR1 changes a specific gene for improved survival in static culture conditions. Static culture triggered formation of colony variants with deletions or point mutations in the gene bspP (BGLU_RS28885), which putatively encodes a protein that contains PDC2, PAS-9, SpoIIE, and HATPase domains. The null mutant of bspP survived longer in static culture conditions and produced a higher level of bis-(3'-5')-cyclic dimeric guanosine monophosphate than the wild type. Expression of the bacterial cellulose synthase regulator (bcsB) gene was upregulated in the mutant, consistent with the observation that the mutant formed pellicles faster than the wild type. Mature pellicle formation was observed in the bspP mutant before pellicle formation in wild-type BGR1. However, the population density of the bspP null mutant decreased substantially when grown in Luria-Bertani medium with vigorous agitation due to failure of oxalate-mediated detoxification of the alkaline environment. The bspP null mutant was less virulent and exhibited less effective colonization of rice plants than the wild type. All phenotypes caused by mutations in bspP were recovered to those of the wild type by genetic complementation. Thus, although wild-type B. glumae BGR1 prolonged viability by spontaneous mutation under static culture conditions, such genetic changes negatively affected colonization in rice plants. These results suggest that adaptive gene sacrifice of B. glumae to survive unfavorable growth conditions is not always desirable as it can adversely affect adaptability in the host.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kwak</LastName>
<ForeName>Gi-Young</ForeName>
<Initials>GY</Initials>
<AffiliationInfo>
<Affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goo</LastName>
<ForeName>Eunhye</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jeong</LastName>
<ForeName>Haeyoon</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>Ingyu</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">0000-0002-4250-4165</Identifier>
<AffiliationInfo>
<Affiliation>Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<SupplMeshList>
<SupplMeshName Type="Organism" UI="C000653077">Burkholderia glumae</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000220" MajorTopicYN="N">Adaptation, Biological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019117" MajorTopicYN="N">Burkholderia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016680" MajorTopicYN="N">Genome, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053038" MajorTopicYN="N">Quorum Sensing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32833990</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0238151</ArticleId>
<ArticleId IdType="pii">PONE-D-20-13974</ArticleId>
<ArticleId IdType="pmc">PMC7444824</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Dis. 2003 Aug;87(8):890-895</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30812790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Nov 23;539(7630):524-529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27882964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Feb;183(4):1195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2017 Feb 28;8(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28246357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2011;65:261-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Evol Biol. 2012;2012:394026</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22900231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Oct;50(1):15-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2014 Sep;68(9):2559-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24910088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jan;187(2):639-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Mar;6(3):199-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18264116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2010 Nov 16;10:291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21080927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1989 Jul;218(1):127-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2550761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2020 Jan 17;10:3090</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32010117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12503-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18719125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Nov;75(21):6910-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2018 May 21;28(10):R619-R634</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29787730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bio Protoc. 2013;3(14):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25429368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1999 Jun;63(2):479-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10357859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Mar 25;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25806684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Dec;190(24):7910-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Nov;14(11):716-723</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27640757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Apr;64(1):165-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23150539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Aug;72(4):989-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Apr;179(4):1265-1272</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30824565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Nov;54(4):921-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">377280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2017 Dec;47:102-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29059583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jul 2;394(6688):69-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9665128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2018 May 11;16(5):e2005056</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29750784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev Syst Biol Med. 2011 Sep-Oct;3(5):544-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21197660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 1980 Jun;26(7):827-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7379303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012 Jun;8(6):e1002787</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22761588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2016 Sep 09;198(19):2564-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27044625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 08;9(1):e84831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24416296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2016 May;40(3):373-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26895713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2019 Nov 22;431(23):4712-4731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31260694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Infect Microbiol. 2017 Feb 15;7:39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28261568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Mar;11(3):205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23411864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Clin Microbiol Antimicrob. 2016 May 31;15(1):37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27245674</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
<region>
<li>Région capitale de Séoul</li>
</region>
<settlement>
<li>Séoul</li>
</settlement>
<orgName>
<li>Université nationale de Séoul</li>
</orgName>
</list>
<tree>
<country name="Corée du Sud">
<region name="Région capitale de Séoul">
<name sortKey="Kwak, Gi Young" sort="Kwak, Gi Young" uniqKey="Kwak G" first="Gi-Young" last="Kwak">Gi-Young Kwak</name>
</region>
<name sortKey="Goo, Eunhye" sort="Goo, Eunhye" uniqKey="Goo E" first="Eunhye" last="Goo">Eunhye Goo</name>
<name sortKey="Hwang, Ingyu" sort="Hwang, Ingyu" uniqKey="Hwang I" first="Ingyu" last="Hwang">Ingyu Hwang</name>
<name sortKey="Hwang, Ingyu" sort="Hwang, Ingyu" uniqKey="Hwang I" first="Ingyu" last="Hwang">Ingyu Hwang</name>
<name sortKey="Jeong, Haeyoon" sort="Jeong, Haeyoon" uniqKey="Jeong H" first="Haeyoon" last="Jeong">Haeyoon Jeong</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000276 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000276 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32833990
   |texte=   Adverse effects of adaptive mutation to survive static culture conditions on successful fitness of the rice pathogen Burkholderia glumae in a host.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32833990" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020